MID-SEMESTER EXAMINATION B. MATH II YEAR, II SEMESTER 2012-2013 ANALYSIS IV.

1. Consider the set of polynomials p satisfying the condition $\int_0^1 p(x)dx = 1$ as a subset of C[0, 1] (with the usual supremum norm). Is this set totally bounded? Justify.

solution: Let $S = \{p(x) \text{ is a polynomial } x \in [0, 1] \text{ such that } \int_0^1 p(x) dx = 1\}$ then it is easy to see that

$$S = \left\{ \sum_{k=0}^{n} a_k x^k : \sum_{k=0}^{n} \frac{a_k}{k+1} = 1, \quad 0 \le x \le 1, \ n \in \mathbb{N} \right\}$$

Let assume that S is totally bounded then for each $\epsilon > 0$ there exits finite $\{p_1, p_2, \cdots, p_{m(\epsilon)}\}$ set of polynomials such that

$$S \subset \bigcup_{i=0}^{m(\epsilon)} B_{\epsilon}(p_i), \quad B_{\epsilon}(p_i) = \{p : \|p - p_i\|_{\infty} < \epsilon\}$$

Let $p_i(x) = \sum_{k=0}^{m_i} a_k^i x^k$ and define the following set

 $V = \{a_k^i : i = 1, 2, \cdots, m(\epsilon) \text{ and } k = 1, 2, \cdots, M\}, \ M = \max\{\deg p_i : i = 1, 2, \cdots, m(\epsilon)\}.$

Since the above set V is finite we can chose $M \in \mathbb{N}$ such that

$$(M+1) \left| \frac{1}{M+1} \sum_{k=0}^{m_i} a_k^i - 1 \right| > \epsilon \ \forall \ a_k^i \in V.$$

define $q(x) = (M+1)x^M$ then $q \in S$ and it is easy to see the following

$$||q-p_i||_{\infty} \ge |q(1)-p_i(1)| = (M+1) \left| \frac{1}{M+1} \sum_{k=0}^{m_i} a_k^i - 1 \right| > \epsilon \,\forall \, i = 1, 2, \cdots, m(\epsilon).$$

the above is contradiction to the fact that $S \subset \bigcup_{i=0}^{m(\epsilon)} B_{\epsilon}(p_i)$, so the set S is not totally bounded.

2. Is the set of all functions of the type $\sum_{j=0}^{N} a_j [\sin x]^{2j}$ (where $N \geq 1$ and $a_j \in \mathbb{R}$) dense in C[-2, 2] (with the usual supremum norm)? Justify.

solution: It is easy to see that the given set S of functions forms a subalgebra of C[-2, 2] and its contain identity f(x) = 1. Let $s, t \in [-2, 2]$ such that s = -t. Then we have f(t) = f(-s), $\forall f \in S$ i.e S does not separate points so we can not apply The Stone-Weierstrass Theorem.

Let $g(x) = \sin x$ then $g \in C[-2, 2]$ and $g(\frac{\pi}{2}) = 1$ and $g(-\frac{\pi}{2}) = -1$. Assume S is dense in C[-2, 2] then there exist $\{f_n\} \in S$ such that $||f_n - g||_{\infty} \to 0$ as $n \to \infty$ since $f_n \in S$ we have $f_n(\frac{\pi}{2}) = f_n(-\frac{\pi}{2})$. This will say that $\lim_{n\to\infty} f_n(\frac{\pi}{2}) = \lim_{n\to\infty} f_n(-\frac{\pi}{2})$ but $||f_n - g||_{\infty} \to 0$ will imply $\lim_{n\to\infty} f_n(\frac{\pi}{2}) = g(\frac{\pi}{2}) = 1$ and $\lim_{n\to\infty} f_n(-\frac{\pi}{2}) = g(-\frac{\pi}{2}) = -1$ i.e $\lim_{n\to\infty} f_n(\frac{\pi}{2}) \neq \lim_{n\to\infty} f_n(-\frac{\pi}{2})$ a contradiction. So the given set of functions S is not dense in C[-2, 2].

3. Consider the initial value problem y' = f(x, y), $y(0) = \frac{1}{3}$, where f is a continuous function: $[-1, 1] \times [-1, 1] \rightarrow [-3, 3]$ which has continuous partial derivative w.r.t. y at every point satisfying $|\frac{\partial f}{\partial y}| \leq 1$ at every point. Show that this problem has a unique solution on $[-\delta, \delta]$ with $\delta = \frac{2}{9}$.

solution: See existence and uniqueness theorem for IVP.

4. If f is continuously differentiable on (a, b) and if f' is non-decreasing show that f is convex.

solution: Let $x_1 < x_2 < x_3$ with $x_1, x_2, x_3 \in [a, b]$ then we can write

$$x_2 = \frac{x_3 - x_2}{x_3 - x_1} x_1 + \frac{x_2 - x_1}{x_3 - x_1} x_3.$$

Now using mean value theorem we get

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(\xi), \quad \frac{f(x_3) - f(x_2)}{x_3 - x_2} = f'(\eta) \quad x_1 < \xi < x_2 < \eta < x_3.$$

since f' is non-decreasing we have $f'(\xi) \leq f'(\eta)$ this will give

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_3) - f(x_2)}{x_3 - x_2}.$$

Re-arranging above we get

$$f(x_2) \le \frac{x_3 - x_2}{x_3 - x_1} f(x_1) + \frac{x_2 - x_1}{x_3 - x_1} f(x_3).$$

The above imply f is convex.

5. Prove that vector space spanned by $\{z^n : n = 0, 1, 2, \dots\}$ is not dense in the space C(T) (where $T = \{z \in \mathbb{C} : |z| = 1\}$ and C(T) is given supremum metric.)

solution: Let $S = \{z^n : n = 0, 1, 2, \dots\}$ is dense in C(T). Let $g(z) = \overline{z}$ then $g \in C(T)$. Since S is dense in C(T) then there exist $\{f_n\} \in span(S)$ such that $||f_n - g||_{\infty} \to 0$ as $n \to \infty$. Now uniform convergence together with DCT imply

$$\int_{|z|=1} f_n(z)dz \to \int_{|z|=1} g(z)dz \quad as \quad n \to \infty.$$

Now $\int_{|z|=1} f_n(z)dz = 0$ as $\int_{|z|=1} z^k dz = 0 \quad \forall \ k \in \mathbb{N}$ but $\int_{|z|=1} g(z)dz = 0$ a contradiction. So the vector space spanned by $\{z^n : n = 0, 1, 2, \cdots\}$ is not dense in the space C(T).

6. Show that there does not exist independent elements f_1, f_2, \cdots in C[0, 1] which span C[0, 1].

solution: Let $S = span\{f_1, f_2, \dots\}$ then S is a vector subspace of C[0, 1]. w.l.o.g we assume $||f_i||_{\infty} \neq 0 \quad \forall i$. Now define

$$g_n(x) = \frac{1}{2^n} \sum_{k=1}^n \frac{f(x)}{\|f\|_{\infty}} \quad n \ge 1 \quad and \quad g_n \in S.$$

Now we can see that

$$|g_n(x)| \le \frac{n}{2^n}$$
 and $\sum_{n=1}^{\infty} \frac{n}{2^n} < \infty.$

so $g_n \to g$ uniformly as $n \to \infty$ therefore $g \in C[0, 1]$. It can be seen that $g_n \in S \quad \forall n \text{ but } g \notin S$. So $S = span\{f_1, f_2, \cdots\} \neq C[0, 1]$.